
28 2168-2356/19©2019 IEEE Copublished by the IEEE CEDA, IEEE CASS, IEEE SSCS, and TTTC IEEE Design&Test

Embedded Intelligence in the Internet-of-Things

Editor’s note:
This article describes a method for efficient hypervector operations using
a grouping strategy for reduced computations. Quantization is used for
reducing the number of multiplications, whereas caching of magnitude is
used for eliminating redundant computations.

—Shao-Wen Yang, Intel Corporation

Digital Object Identifier 10.1109/MDAT.2019.2919954

Date of publication: 30 May 2019; date of current version:

6 February 2020.

 The emergence of the Internet of Things has
created an abundance of small embedded devices.
Many of these devices may be used for cognitive
tasks such as face detection, speech recognition,
image classification, activity monitoring, and so on.
Learning algorithms such as deep neural networks
(DNNs) give accurate results for cognitive tasks [1].
However, these embedded devices have limited
resources and cannot run such resource-intensive
algorithms. Instead, many of them send the data
they collect to the cloud server for feature analysis.
However, this is not desirable due to privacy con-
cerns, security concerns, and network resources.
Thus, we need more efficient lightweight classifi-
ers in order to perform such cognitive tasks on the
embedded systems.

Brain-inspired hyperdimensional (HD) comput-
ing can be used as a lightweight classifier to perform
cognitive tasks on resource-limited systems [2]. HD

computing is modeled after how the
brain works, using patterns of neural
activity instead of computational arithme-
tic. Past research utilized high-dimension
vectors (D ≥ 10,000) called hypervectors
to represent neural patterns. It showed
that HD computing is capable of provid-
ing high-accuracy results for a variety of

tasks such as language recognition, face detection,
speech recognition, classification of time-series sig-
nals, and clustering [3]–[7]. Results are obtained at a
much lower computational cost as compared to other
learning algorithms.

HD computing performs the classification task
after encoding all data points to high-dimensional
space. The HD training happens by linearly com-
bining the encoded hypervectors and creating a
hypervector representing each class. In inference,
HD uses the same encoding module to map a test
data point to high-dimensional space. Then the clas-
sification task checks the similarity of the encoded
test hypervector with all pretrained class hypervec-
tors. This similarity check is the main HD computa-
tion during the inference; often done with a cosine,
which involves a large number of costly multiplica-
tions, grows with the number of classes [8]. Given an
application with k classes, inference requires k × D
additions and multiplications to perform, where D
is the hypervector dimension. Thus, this similarity
check can be costly for embedded devices with
limited resources.

Efficient Associative
Search in Brain-Inspired
Hyperdimensional
Computing
Mohsen Imani, Justin Morris, Helen Shu,
Shou Li, and Tajana Rosing
University of California at San Diego

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on June 29,2020 at 21:34:05 UTC from IEEE Xplore. Restrictions apply.

29January/February 2020

In this article, we propose a robust and efficient
solution to reduce the computational complexity
and cost of HD computing while maintaining com-
parable accuracy. The proposed HD framework
exploits the mathematics in high-dimensional
space in order to limit the number of classes
checked upon inference, thus reducing the num-
ber of computations needed for query requests.
We add a new layer before the primary HD layer to
decide which subset of class hypervectors should
be checked as possible classes for the output class.
This reduces the number of additions and multi-
plications needed for inference. In addition, our
framework removes the costly multiplication from
the similarity check by quantizing the values in
the trained HD model with the power of two val-
ues. Our approach integrates quantization with the
training process in order to adapt the HD model to
work with the quantized values. We have evaluated
our proposed approach on three practical classi-
fication problems. Our evaluations show that the
proposed design is 11.6× more energy efficient and
8.3× faster as compared to the baseline HD, while
providing similar classification accuracy.

Hyperdimensional computing
HD computing uses long vectors with dimension-

ality in the thousands [2]. There are many nearly
orthogonal vectors in high-dimensional space.
HD combines these hypervectors with well-defined
vector operations while preserving most of their
information. No component has more responsi-
bility to store any piece of information than any
other component because hypervectors are holo-
graphic and (pseudo) random with independent
and identically distributed (i.i.d.) components
and full holistic representation. The mathematics
governing the high-dimensional space computations
enables HD to be easily applied to many different
learning problems.

Figure 1 shows an overview of the structure of the
HD model. HD consists of an encoder, trainer, and
associative search block. The encoder maps data
points into high-dimensional space. These hyper-
vectors are then combined in a trainer block to
form class hypervectors, which are then stored in an
associative search block. In inference, an input test
data is encoded to high-dimensional space using the
same encoder as the training module. The classifier
uses cosine similarity to check the similarity of the

encoded hypervector with all class hypervectors and
find the most similar one.

Encoding
Consider a feature vector v = 〈v1,  ...  vn〉. The

encoding module takes this n-dimensional vector
and converts it into a D-dimensional hypervector
(D >> n). The encoding is performed in three steps,
which we describe in the following.

We use a set of precomputed level or base
hypervectors to consider the impact of each fea-
ture value [9]. To create these level hypervectors,
we compute the minimum and maximum feature
values among all data points, vmin and vmax, then
quantize the range of [vmin, vmax] into Q levels,
L = {L1, … , LQ}. Each of these quantized scalars cor-
responds to a D-dimensional hypervector [9].

Once the base hypervectors are generated, each
of the n elements of the vector v is independently
quantized and mapped to one of the base hyper-
vectors. The result of this step is n different binary
hypervectors, each of which is D -dimensional.
In the last step, the n (binary) hypervectors are
combined into a single D -dimensional (nonbi-
nary) hypervector. To differentiate the impact of
each feature index, we devise ID hypervectors,
{ID1, …  , IDn}. An ID hypervector has the bina-
rized dimensions, i.e., ​​ID​ i​​ ∈ ​​{0, 1}​​​ D​​. We create
IDs with random binary values so that the ID
hypervectors of different feature indexes are
nearly orthogonal:

	​ δ​(I​D​ i​​ , I​D​ j​​)​ ≃ ​D⁄2​​ ​​ (i ≠ j & 0 < i,  j ≤ n)​​

where the similarity metric, ​δ​(I​D​ i​​ , I​D​ j​​)​​, is the Ham-
ming distance between the two ID hypervectors.

Figure 1. Overview of HD computing performing the
classification task.

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on June 29,2020 at 21:34:05 UTC from IEEE Xplore. Restrictions apply.

30 IEEE Design&Test

Embedded Intelligence in the Internet-of-Things

The orthogonality of ID hypervectors is ensured
as long as the hypervector dimensionality is large
enough compared to the number of features in the
original data point (D >> n). As Figure 1 shows, the
aggregation of the n binary hypervectors is computed
as follows:

	​ H = I​D​ 1​​ ⊕ ​​
_

 L​​ 1​​ + I​D​ 2​​ ⊕ ​​
_
 L​​ 2​​ + . . .  + I​D​ n​​ ⊕ ​​

_
 L​​ n​​​

where ⊕ is xor operation, H is the aggregation, and
​​​
_

 L​​ i​​​​​ is the binary hypervector corresponding to the
i th feature of vector v.

Classification in HD space
In HD, training is performed in high-dimensional

space by elementwise addition of all encoded hyper-
vectors in each existing class. The result of training
will be k hypervectors with D dimensions, where k
is the number of classes. For example, the i th class
hypervector can be computed as: ​​C​​ i​ = ​∑​​∀​ j∈clas ​s​ i​​ ​H​ j​​​.

In inference, HD uses encoding and associative
search for classification. First, HD uses the same
encoding module as the training module to map
a test data point to a query hypervector. In HD
space, the classification task then checks the similar-
ity of the query with all class hypervectors. The class
with the highest similarity to the query is selected as
the output class. Since in HD, information is stored
as the pattern of values, the cosine is a suitable
metric for similarity check.

HD computing challenges
To understand the main bottleneck of HD

computing during inference, we evaluate the HD

inference on three practical classification applica-
tions, including speech recognition [10], activity
recognition [11], and image recognition [12]. All
evaluations are performed on Intel i7 7600 CPU
with 16-GB memory. Our results show that the
associative search takes about 83% of the total
inference execution. This is because the cosine
similarity has many multiplications between a
query and the class hypervectors. Prior work tried
to binarize the HD model after the training [3]. This
method simplifies the cosine similarity to Hamming
distance measurement, which can run faster and
more efficiently in hardware. However, our evalua-
tion of three practical applications shows that bina-
rization reduces the classification accuracy of HD
with integer model by 11.4% on an average. This
large accuracy drop forces HD to use cosine simi-
larity which has a significant cost when running on
embedded devices.

HD computing acceleration
In this article, we propose three optimiza-

tion methods that reduce the cost of associative
search during inference by at least an order of
magnitude. Figure 2 shows an overview of the
proposed optimizations. The first approach sim-
plifies the cosine similarity calculations to dot
products between the query and class hypervec-
tors. The second reduces the number of required
operations in the associative search by adding a
category layer to HD computing which decides
what subset of class hypervectors needs to be
checked for the output class. The third removes
the costly multiplications from the similarity

Figure 2. Overview of proposed optimization approaches to improve the efficiency of associative search.

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on June 29,2020 at 21:34:05 UTC from IEEE Xplore. Restrictions apply.

31January/February 2020

check by quantizing the HD model after train-
ing. In the following subsections, we explain the
details of each proposed approach.

Similarity check: Cosine or dot product?
During inference, HD computation encodes

input data to a query hypervector, H = {hD, .   .   .   , h2, h1}.
Associative memory then measures the cosine sim-
ilarity of this query with k stored class hypervec-
tors {C1, .   .   .     , Ck}, where Ci = ​​{​c​ D​ i ​, .   .   .   , ​ c​ 2​ i ​, ​ c​ 1​ i ​}​​ is the
class hypervector corresponding to the i th class
(Figure 2a). The cosine similarity can be expressed
as δ = H ⋅ ​C​​ i​ ⁄ ​​|H|​​ ​​|Ci|​​, where ​H ⋅ ​C​​ i​​ indicates the dot
product between the hypervectors, and ​​|H|​ = H ⋅ H​
and ​​|Ci|​ = ​C​​ i​ ⋅ ​C​​ i​​ show the magnitudes of the query
and class hypervector. However, it is very expen-
sive to calculate the operand magnitude every
time. During the similarity check, the query hyper-
vector is common between all classes. Thus, we
can skip the calculation of the query magnitude,
since the goal of HD is to find the maximum rela-
tive similarity, and not the exact cosine values. On
the other hand, as shown in Figure 2b, the magni-
tude of each class hypervector can be computed
once after the training. Therefore, the associative
search can store the normalized class hypervec-
tors (​​C​​ i​ ⁄  ​|Ci|​​ for ​i ∈ 1,   …  ,  k).​ This speeds up the
similarity at inference by about 3× as compared
to cosine.

Two level search
Although the dot product reduces the cost of the

associative search, this similarity check still involves
many computations. For example, for an application
with k classes, associative search computes k × D
multiplication/addition operations, where D is the
hypervector dimension. In addition, in existing HD
computing approaches [3], [9], the cost of associ-
ative search increases linearly with the number of
classes. For example, speech recognition with k = 26
classes has 13× more computations and 5.2× slower
inference as compared to face detection with k = 2
classes. Since embedded devices often do not have
enough memory and computing resources, process-
ing HD applications with large numbers of classes is
more inefficient.

We propose a method that has a two-layer clas-
sification: category and main stages. Figure 2c
shows an overview of the proposed approach.
First, we group the trained class hypervectors into

k/m categories based on their similarity, where k
and m are the number of classes and group size,
respectively. For example, m = 2 indicates that
we group every two class hypervectors into a sin-
gle hypervector. Next, we build a new HD model,
called category stage, which stores all k/m group
hypervectors. Instead of searching k hypervectors
to classify a data point, we first search the category
stage to identify the group of classes that the query
belongs to (among k/m group hypervectors). After-
ward, we continue the search in the main HD stage,
but only with the class hypervectors corresponding
to the selected group.

Quantization
Although grouping the class hypervectors

reduces the number of computations, the dot prod-
uct similarity check still has many costly multipli-
cations. In this work, we propose a method which
removes the majority of the multiplications from the
HD similarity check. After training the HD model,
we quantize each class value to the closest power of
two (2i, ​i ∈ ). ​This eliminates the multiplication by
allowing bit shift operations. However, this quan-
tization is not error free. For example, the closest
power of two for the number 46 would be either 32
or 64. Both of these numbers are far from the actual
value. This approximation can add large errors to
HD computing. The amount of error depends on the
number of classes and how similar the classes are.
For applications with many classes or highly corre-
lated class hypervectors, this quantization can have
a large impact on the classification accuracy.

In this article, we look at the possibility of per-
forming a more precise but lower power quanti-
zation approach (Figure 2d). Our method assigns
each class element to a combination of two power
of two values (2i + 2j, ​i & j ∈ ​). This quantization
can assign each trained class element to a value
which is much closer to the actual element. For
example, using this approach, the number 46 can
be assigned to 48 = 25 + 24, which is very close to
the actual value. This enables more precise quanti-
zation with correspondingly lower impact on accu-
racy. This strategy implements multiplication using
two shifts and a single add operation, which is still
faster and more efficient than the actual multipli-
cation. After training the HD model, we assign the
class elements in both category and main stages to
the closest quantized value.

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on June 29,2020 at 21:34:05 UTC from IEEE Xplore. Restrictions apply.

32 IEEE Design&Test

Embedded Intelligence in the Internet-of-Things

Since class hypervectors are highly correlated,
even this quantization can have a large impact
on the classification accuracy. Quantization intro-
duces this quality loss because the HD model is not
trained to work with the quantized values. In order
to ensure a minimum quality loss, we integrate
quantization with the HD model retraining. This
enables the HD model to learn how to work with
quantized values. In the algorithm explained in the
“Training and inference in the proposed design”
section, after getting a new adjusted model, we
quantize all hypervector values in the category and
main stages. This approach reduces the possible
quality loss due to quantization. In the “Accuracy”
section, we discuss the impact of quantization on
HD classification accuracy.

Training and inference in the proposed design
Training: Figure 2 shows the training process of

HD with grouped hypervectors.  We first train a nor-
mal HD computing model, where each hypervec-
tor represents an existing class (Figure 2a). Next,
we normalize the class hypervectors (Figure 2b)
and then check the similarity of the trained class
hypervectors in order to group the classes. In our
approach, we group every m class hypervector
into a single hypervector, and as a result, we have
k/m group hypervectors (Figure 2c). The grouping
is done by checking the similarity of class hyper-
vectors in pairs and classes were merged with the
highest similarity. The selected class hypervectors
are added together to generate a group hypervec-
tor. We store these k/m group hypervectors into the
category stage. Then, we quantize the values of the
grouped model (Figure 2d). This one-shot trained
model can be used to perform the classification
task at inference.

Model adjustment: To get better classification
accuracy, we can adjust the HD model with the
training data set for a few iterations (Figure 2e). The
model adjustment starts in the main HD stage. During
a single iteration, HD checks the similarity of all train-
ing data points, say H, with the current HD model.
If data are wrongly classified by the model, HD
updates the model by 1) adding the data hypervec-
tor to a class to which it belongs and 2) subtracting
it from a class with which it was wrongly matched.

​Main​
{

​
​​  C​​ main​ 

c ​  = ​ C​ main​ 
c ​  + H,  where ​C​ main​ 

c ​   is  correct
​    

​​  C​​ main​ 
w ​  = ​ C​ main​ 

w ​  − H,  where ​C​ main​ 
w ​   is  wrong

 ​​​

We similarly update two corresponding hypervectors
in the category stage by adding and subtracting the
query hypervector.

​Category​
{

​
​​  C​​ 

category
​ c ​  = ​ C​ 

category
​ c ​  + H,  where ​ C​ 

main
​ c ​  ∈ ​ C​ 

category
​ c ​
​    

​​  C​​ 
category

​ w ​  = ​ C​ 
category

​ w ​  − H,  where  ​C​ 
main

​ w ​  ∈ ​ C​ 
category

​ w ​
 ​​​

The model adjustment needs to be continued
for a few iterations until the HD accuracy stabilizes
over the validation data, which is a part of the train-
ing data set. After training and adjusting the model
offline, it can be loaded onto embedded devices to
be used for inference.

Inference: The proposed approach works very
similarly to the baseline HD computing, except
there are two stages now. First, we check the sim-
ilarity of a query hypervector in the category stage.
A category hypervector with the highest cosine
similarity is selected to continue the search in the
main stage.

Here, we check the similarity of the query hyper-
vector against the classes within the selected cate-
gory. For example, in Figure 2c, if group 2 had the
highest cosine similarity with the query hypervector,
then only the green class hypervectors are selected
for search in the main stage. Finally, a class with
the highest cosine similarity in the main stage is
selected as the output class. This approach reduces
the number of required operations. For an applica-
tion with k classes, our approach reduces the num-
ber of required similarity checks from k to k/m + m
hypervectors. For example, for an application with
k = 16 and m = 4, the number of required operations
is reduced by a factor of 2.

Evaluation

Experimental setup
We perform HD training and retraining using

C++ implementation on Intel Core i7 processor
with 16-GB memory (4 core, 2.8 GHz). We describe
the inference functionality using RTL System-Ver-
ilog and use standard digital ASIC flow to design
dedicated hardware. For the synthesis, we use
Synopsys Design Compiler with the Taiwan Semi-
conductor Manufacturing Company (TSMC) 45-nm
technology library and the general purpose pro-
cessor with high-VTH cells. We extract the design
switching activity using ModelSim, and measure
the power consumption of HD designs using Synop-
sys Prime-Time at the (1 V, 25 °C, TT) corner.

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on June 29,2020 at 21:34:05 UTC from IEEE Xplore. Restrictions apply.

33January/February 2020

We test the efficiency of the proposed approach
on the following three practical applications:

Speech Recognition (ISOLET) [10]: Recognize
voice audio of the 26 letters of the English alphabet.
The training and testing data sets are taken from
the Isolet data set. This data set consists of 150 sub-
jects speaking each letter of the alphabet twice. The
speakers are grouped into sets of 30 speakers. The
training of hypervectors is performed on Isolet 1, 2,
3, 4, and tested on Isolet 5.

Activity Recognition (UCIHAR) [11]: Detect
human activity based on three-axial linear acceler-
ation and three-axial angular velocity that has been
captured at a constant rate of 50 Hz. The training and
testing data sets are taken from the Human Activity
Recognition data set. This data set contains 10,299
samples, each with 561 attributes.

Image Recognition (IMAGE) [12]: Recognize
hand-written digits 0 through 9. The training and
testing data sets are taken from the Pen-Based Rec-
ognition of Handwritten Digits data set. This data set
consists of 44 subjects writing each numerical digit
250 times. The samples from 30 subjects are used for
training and the other 14 are used for testing.

Accuracy
In this section, we study the impact of quantiza-

tion and two-level search classification accuracy.
Table 1 shows the HD classification accuracy for
four different configurations when we categorize
the class hypervectors into groups of m = 1 to 4. The
configuration m = 1 is the baseline HD, where we do
not have any grouping. HD in m = 2 configuration is
where each group consists of two class hypervec-
tors. This generates k/m hypervectors in the cate-
gory stage. Our evaluation shows that grouping has
a minor impact on classification accuracy (0.6%
on average). HD classification accuracy is also a
weak function of grouping configurations. How-
ever, the number of hypervectors in the category
stage affects the number of computations needed

for inference. Therefore, we choose the grouping
approach that minimizes the number of required
operations for a given application. For example, for
activity recognition with k = 12 classes, the grouping
with m = 4 results in maximum efficiency since it
reduces the number of effective hypervectors from
k = 12 to k/m + m = 7.

Table 1 also shows the HD classification accu-
racy for two types of quantization. Our results show
that HD on an average loses 3.7% in accuracy when
quantizing the trained model values to the power
of two values (2i). However, quantizing the val-
ues to 2i + 2j values enables HD to provide similar
accuracy to HD with integers with less than 0.5%
error. This quantization results in 2.2× energy effi-
ciency improvement and 1.6× speedup by mode-
ling the multiplication with two shifts and a single
add operation.

Efficiency
The goal is to have HD to be small and scalable

so that is can be stored and processed on embedded
devices with limited resources. In the conventional
HD, each class is represented using a single hyper-
vector. We address this issue by grouping classes
together, which significantly lowers the number of
computations, and with quantization, which removes
costly multiplications from the similarity check.

 
Table 1. Classification accuracy of HD with integer (baseline) and quantized model.

Figure 3. Energy consumption and execution time
of HD using proposed optimization approaches.

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on June 29,2020 at 21:34:05 UTC from IEEE Xplore. Restrictions apply.

34 IEEE Design&Test

Embedded Intelligence in the Internet-of-Things

Figure 3 compares the energy consumption and
execution time of the proposed approach with
the baseline HD computing during inference. We
reported results such that the reader can see the
impact of different optimizations. To have a fair
comparison, the baseline HD uses the same encod-
ing and number of retraining iterations as the pro-
posed design. Our evaluation shows that grouping
of class hypervectors can achieve on an average
5.3× energy efficiency improvement and 4.9× faster
as compared to the baseline HD using cosine sim-
ilarity. In addition, quantization (2i + 2j ) of class
elements can further improve the HD efficiency
by removing costly multiplications. Our evalua-
tions show that HD enhancing with both grouping
and quantization achieves 11.6× energy efficiency
and 8.3× speedup as compared to baseline HD
using cosine while providing similar classification
accuracy.

HD computing is a promising solution to per-
forming lightweight classification tasks; however,
HD is computationally expensive when work-
ing with applications that have large numbers of
classes. In this article, we proposed three novel
approaches to reduce the HD computation cost
during inference. Our first approach simplifies
cosine similarity operations to dot product oper-
ations by caching class hypervector magnitudes.
Our second approach reduces the number of com-
putations during inference by grouping the class
hypervectors and performing the similarity check
in two stages. Our third approach quantizes the
HD trained model and removes costly multiplica-
tions from the similarity check. Using the proposed
approach enables us to exploit HD as a lightweight
classifier for computing on the edge, such as on
small embedded devices.� 

Acknowledgments
This work was supported in part by CRISP, one of

six centers in JUMP, an SRC program sponsored by
DARPA, and in part by the NSF under Grant 730158,
Grant 1527034, and Grant CNS-1339335.

 References
	 [1]	 A. Krizhevsky, I. Sutskever, and G. E. Hinton,

“Imagenet classification with deep convolutional

neural networks,” in Advances in Neural Information

Processing Systems. Lake Tahoe, NV, USA: NeurIPS,

pp. 1097–1105, 2012.

	 [2]	 P. Kanerva, “Hyperdimensional computing: An

introduction to computing in distributed representation

with high-dimensional random vectors,” Cogn.

Comput., vol. 1, no. 2, pp. 139–159, 2009.

	 [3]	 A. Rahimi, P. Kanerva, and J. M. Rabaey, “A robust

and energy-efficient classifier using brain-inspired

hyperdimensional computing,” in Proc. 2016 Int. Symp.

Low Power Electr. Des., pp. 64–69.

	 [4]	 M. Imani et al., “Low-power sparse hyperdimensional

encoder for language recognition,” IEEE Des. Test,

vol. 34, no. 6, pp. 94–101, 2017.

	 [5]	 A. Rahimi et al., “Hyperdimensional computing for

blind and one-shot classification of EEG error-related

potentials,” Mobile Netw. Appl., vol. 1, pp. 1–12, 2017.

	 [6]	 M. Imani et al., “A binary learning framework for

hyperdimensional computing,” in Proc. DATE, 2019.

	 [7]	 M. Imani et al., “HDcluster: An accurate clustering

using brain-inspired high-dimensional computing,” in

Proc. DATE, 2019.

	 [8]	 M. Imani et al., “Hierarchical hyperdimensional

computing for energy efficient classification,” in Proc.

55th Annu. Des. Autom. Conf., p. 108, 2018.

	 [9]	 M. Imani et al., “VoiceHD: Hyperdimensional computing

for efficient speech recognition,” in Proc. Int. Conf.

Rebooting Computing (ICRC), pp. 1–6, 2017.

	[10]	 “UCI machine learning repository.” [Online]. Available:

http://archive.ics.uci.edu/ml/datasets/ISOLET

	[11]	 D. Anguita et al., “Human activity recognition on

smartphones using a multiclass hardware-friendly

support vector machine,” in Proc. Int. Workshop

Ambient Assisted Living, Springer, pp. 216–223, 2012.

	[12]	 “UCI machine learning repository.” [Online]. Available:

https://archive.ics.uci.edu/ml/datasets/Pen-Based+

Recognition+of+Handwritten+Digits

Mohsen Imani is currently pursuing the PhD
degree with the Department of Computer Science
and Engineering, University of California San Diego,
CA. His research interests include brain-inspired
computing and computer architecture.

Justin Morris is currently pursuing the PhD
degree with the Electrical and Computer Engineering
Department, University of California San Diego, CA.
Morris has a BS from the Department of Computer
Science and Engineering, University of California
San Diego (2018). His research interests include
hyperdimensional computing, machine learning, and
processing in-memory.

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on June 29,2020 at 21:34:05 UTC from IEEE Xplore. Restrictions apply.

https://archive.ics.uci.edu/ml/datasets/Pen-Based+Recognition+of+Handwritten+Digits
https://archive.ics.uci.edu/ml/datasets/Pen-Based+Recognition+of+Handwritten+Digits

35January/February 2020

Helen Shu is currently pursuing the BSc degree
with the Computer Science and Engineering
Department, University of California San Diego, CA.
Her research interests include hyperdimensional
computing and machine learning.

Shou Li is a graduate student with the Computer
Science Department, Carnegie Mellon University,
Pittsburgh, PA. Li has a BS from the Department of
Computer Science and Engineering, University of
California San Diego, CA (2018). Her research interest
includes machine learning.

Tajana Rosing is a Professor, a holder of the
Fratamico Endowed Chair, and the Director of the
System Energy Efficiency Laboratory at University
of California San Diego, CA. Her research interests
include energy efficient computing and embedded
and distributed systems.

 Direct questions and comments about this article
to Mohsen Imani, University of California San Diego,
La Jolla, CA 92093 USA; moimani@ucsd.edu.

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on June 29,2020 at 21:34:05 UTC from IEEE Xplore. Restrictions apply.

